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Abstract 

With the aging society, the prevalence of atrial fibrillation (AF) continues to increase. Nevertheless, there are still 
limitations in antiarrhythmic drugs (AAD) or catheter interventions for AF. If it is possible to predict the outcome of AF 
management according to various AADs or ablation lesion sets through computational modeling, it will be of great 
clinical help. AF computational modeling has been utilized for in-silico arrhythmia research and enabled high-density 
entire chamber mapping, reproducible condition control, virtual intervention, not possible clinically or experimentally, 
in-depth mechanistic research. With the recent development of computer science and technology, more sophisti‑
cated and faster computational modeling has become available for clinical application. In particular, it can be applied 
to determine the extra-PV target of persistent AF catheter ablation or to select the AAD with the best effect. AF com‑
putational modeling combined with artificial intelligence is expected to contribute to precision medicine for more 
diverse uses in the future. Therefore, in this review, we will deal with the history, development, and various applica‑
tions of computation modeling.
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Introduction
Atrial fibrillation (AF) is a chronic, progressive arrhyth-
mia that accounts for 20–25% of the causes of ischemic 
stroke, increases the risk of dementia by 2.5 times, and 
accompanies 30% of heart failures. As of 2016, the preva-
lence of AF in Korea reached 1.6%, but that figure con-
tinues to increase due to the aging population, improved 
survival of patients with heart disease, and environmental 
pollution [1]. The prevalence of AF is expected to be 3.5% 
in 2030 when the population begins to decline in Korea, 
but the prevalence of AF is expected to increase continu-
ously. Since AF is asymptomatic in over 40% of cases, the 
diagnosis of subclinical paroxysmal AF is quite difficult 
[2]. However, subclinical AF also increases the risk of 
stroke by 2.5 times if it lasts more than si× minutes [3]. 
In spite of multifactorial conditions that affect the devel-
opment of AF, it is a heritable disease, especially in the 
case of AF occurring at a young age [4]. The effectiveness 
of antiarrhythmic drugs (AADs), the first-line treatment 

for AF rhythm control, is also affected by this heritability 
[5]. Drug therapy for AF has limitations due to individual 
differences in antiarrhythmic effects and drug toxicity [6, 
7]. Paradoxically, due to the limitations of drugs, catheter 
ablation or AF surgery has been developed, and the supe-
rior effect of non-pharmacological treatment of AF over 
AAD treatment has been demonstrated [8, 9]. Currently, 
AF catheter ablation (AFCA) has become a common 
treatment for AAD-resistant AF patients, and it reduces 
heart failure mortality [10], overall AF mortality and hos-
pitalization rates [11], risks of stroke [12] and dementia 
[13], and improves renal function [14]. However, AFCA 
is not a perfect procedure; while its one-year success 
rate is 75–90%, it shows continuous recurrence and its 
five-year recurrence rate reaches 40–50% [15]. With the 
development of intelligent technology and the improve-
ment of computational power, computational modeling is 
now being tried in various ways in clinical diagnosis and 
treatment. This review intends to examine the develop-
ment and application of AF computational modeling to 
overcome the limitations of pharmacological and cath-
eter ablation treatments for AF.
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History, evolution, and hurdles of AF 
computational modeling
AF computational modeling has been used in vari-
ous basic electrophysiological studies since Moe et  al. 
reported on a human atrial cellular model in 1964 [16, 
17]. With the development of experimental cellular 
electrophysiology, AF modeling of the original pro-
totype has been continuously upgraded, and various 
computational models with more accurate human atrial 
cellular ion channel properties have been developed 
and applied (Fig.  1). The Courtemanche model and 
the Nygren model were developed with applications 
of rate-dependent action potential change, restitution, 
and calcium dynamics [18, 19]. These have slightly dif-
ferent formulas of ion currents, pumps, or exchangers, 
resulting in divergent behavior in rate-dependent AP 
and restitution of AP duration [20]. Later, the Courte-
manche model was upgraded to the Krummen model 
[21] and the Nygren model was advanced to the Mal-
eckar [22] and Koivumaki [23] models. In addition, 
according to the AF burden, Wilhelms proposed a 
chronic AF model [20], and Voigt developed a parox-
ysmal AF model [24]. Various AF modelings applying 

atrial tissue anatomy and histology have been applied, 
and sophisticated realistic atrial computation modeling 
that reflects the location of the myocardial scar has 
been introduced by applying late-gadolinium enhance-
ment of cardiac magnetic resonance imaging (MRI) [25, 
26].

Nevertheless, clinical studies using AF computa-
tional modeling to predict clinical outcomes have been 
reported only in the past six to seven years [27]. This 
is because of the time constraint that the simulation 
results synthesized with clinical data obtained at the 
beginning of the procedure should be completed dur-
ing pulmonary vein isolation (less than an hour). It 
took more than 50  years to apply AF computational 
modeling in clinical medicine because it requires high 
computational power for sophisticated and complex 
simulations. However, with the innovative development 
of graphic processing units (GPUs) and parallel com-
puting methods in the last 20 years, it is now possible 
to apply AF computational modeling to AF catheter 
ablation in real-time (Fig.  2) [28]. Table  1 summarizes 
the applications that are possible with cutting-edge AF 
computational modeling.

Fig. 1  Advances in various computational models for elaborate human atrial cellular modeling
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Application of AF computational modeling 1: 
high‑density map of entire chamber
With the introduction of high-density mapping to clinical 
electrophysiology, the understanding of various tachyar-
rhythmia mechanisms has been improving [29]. High-den-
sity maps of decelerating zones and ablation gaps have 
enabled effective arrhythmia interventions with minimal 
ablation-induced tissue damage [30]. Nevertheless, clini-
cal high-density mapping using contact electrograms has 
a fundamental limitation pertaining to sequential point-
by-point mapping. The limited mapping field and the 
electrogram differences according to the electrode size or 
arrangement are weaknesses of multi-electrode catheter 
mapping that are difficult to overcome. Sequential contact 
maps work well in the pacing state or organized regular 
tachycardia, but the wave dynamics of disorganized AF 

cannot be implemented without an entire cardiac cham-
ber map. On the other hand, if computational modeling is 
applied to a clinical voltage/activation map acquired during 
sinus rhythm, and then, virtual AF is induced by simula-
tion, not only entire AF chamber mapping but also biatrial 
high-density AF modeling is possible [31, 32]. The example 
of qualitative comparison of the clinical and virtual local 
activation map and voltage map obtained during high RA 
pacing is shown in Fig. 3. Our research team uses AF com-
putational modeling with a spatial resolution of 300  μm 
and a temporal resolution of 0.1 ms [32].

Fig. 2  Memory bandwidth growth rate of CPU and GPU, and performance comparison between software (SW) implemented with parallel 
computing and others SW. (Left) The finite difference method applied to AF simulation is particularly suitable for parallel computing due to its 
iterative nature and can solve partial differential equations at high speed through GPUs with high bandwidth and many cores compared to CPU. 
(Right) CUVIA SW, which is implemented based on CUDA-based parallel architecture, shows significant performance compared to CARP (Johns 
Hopkins & Bordeaux Univ.) and MATLAB-based SW designed with serial architecture

Table 1  Applications of AF computational modeling

High-density map of entire chamber

Reproducible condition control

Virtual interventions, not possible clinically or experimentally

In-depth mechanistic research

Prediction of clinical outcomes
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Application of AF computational modeling 2: 
reproducible condition control
Simulation-based entire chamber mapping of AF is a 
useful and unique method to understand and analyze 
AF wave dynamics [33, 34]. AF simulation can also be 
applied to detect extra-pulmonary vein (PV) AF driv-
ers or rotors. Phase singularity points (PSs), dominant 
frequency (DF), Shannon’s entropy (ShEn), and complex 
fractionated atrial electrogram (CFAE) have been used 
as indicators representing persistent rotational reentry 
or rotor [35–37]. Which of these indicators representing 
various AF wave-dynamics best reflects the AF rotor can 
be confirmed by targeted virtual ablation? However, vir-
tual ablation should be performed under exactly the same 
conditions and same timing to evaluate their contribu-
tions to the AF maintenance mechanism. Hwang et  al., 
using the characteristic of reproducible conditional con-
trol of AF computational modeling, ablated four different 
indicators under exactly the same conditions and timing 
and proved that DF is the predominant parameter of AF 
maintenance (Fig. 4A) [38].

Application of computational modeling 3: virtual 
interventions, not possible experimentally 
or clinically
In addition to reproducible condition control, tests under 
the same conditions that are not possible by clinical or 
experimental studies can be conducted through AF com-
putational modeling. The AF termination or defragmen-
tation rate after DF ablation was the highest among the 
AF wave-dynamics parameters. However, the position of 
the DF during the prolonged AF maintenance period was 
not stationary and a significant portion was meander-
ing [33]. This DF spatiotemporal instability might have a 
negative effect on the DF ablation during AF. This virtual 
intervention can also be applied to evaluate the effective-
ness of AADs under the same conditions [39].

Computational modeling can reproduce action poten-
tials as well as virtual bipolar or unipolar electrograms 
according to the catheter-tissue contact angle and direc-
tion. Hwang et  al. simulated three different types of 
multi-electrode catheters with different electrode sizes 
and arrangements and demonstrated the difference in the 

Fig. 3  High-resolution virtual local activation and voltage maps derived from clinical substrate maps are quantitatively compared with 
low-resolution clinical local activation and voltage maps. A A clinical substrate map consisting of local activation and voltage maps was acquired by 
the NavX system. B Virtual local activation and voltage maps for virtual atrial remodeling are derived from clinical substrate maps
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electrogram amplitude of the atrial voltage map obtained 
under exactly the same clinical conditions (Fig. 4B) [40].

Application of computational modeling 4: in‑depth 
mechanistic research
The advantage of computational modeling is that vari-
ous elements close to reality can be added to the basic 
AF model. From the simple modeling of a patient’s car-
diac CT image covered by a human atrial cell model [41], 
sophisticated AF modeling with a local degree of fibrosis, 
myocardial fiber orientation, and cardiac MRI-based scar 
character is possible by applying clinical atrial voltage/
local activation maps [31, 32, 42]. Nevertheless, studies 
reflecting extra-cardiac effects, especially cardiac auto-
nomic nerve effects, are not easy to clinically or experi-
mentally conduct. Hwang et al. added cardiac autonomic 
nerve to AF computational modeling according to an 
existing histology study; this created an environment 
for functional parasympathetic and sympathetic activa-
tion and demonstrated PV triggers by Phase 3 early after 
depolarization [43]. This suggests that it is possible to 
study the AF initiation mechanism with computational 
modeling and demonstrated the PV reentry and gangli-
onated plexi ablation effects after the PV trigger (Fig. 5).

Application of computational modeling 5: 
prediction of clinical outcomes
Despite its diverse applications in the research field 
of AF computational modeling, its clinical application 
has begun recently. Speed is a key factor in the clinical 

application of computational modeling, and this became 
possible with the improvement of computational power 
via the development of GPUs and parallel comput-
ing methods. Jacquemet et  al. introduced five studies 
on computational modeling-guided AF ablation [27]. 
Among them, the calculation time of the CUVIA soft-
ware (Laonmed Inc.​, Seoul, Korea) developed by our 
research team was the fastest, at 1.2  min per 1  s of AF 
simulation (Intel i5 6600 + GPU Titan V, 500,000 nodes). 
Therefore, we would like to introduce virtual AF abla-
tion and virtual AAD using CUVIA-AF computational 
modeling.

Computational modeling for AF ablation
The first application of AF computational modeling to 
clinical practice was to determine the optimal lesion 
set for a surgical maze or catheter ablation [41, 44–47]. 
At this time, all of those studies were conducted as 
retrospective studies because lengthy computing time 
was required to evaluate AF intervention and termina-
tion using computational modeling [27]. Hwang et  al. 
tested the effects of five different extra-PV linear or 
electrogram-guided lesion sets by mapping the data of 
20 patients with persistent AF who underwent AF cath-
eter ablation using CUVIA software [41]. In that study, 
the lesion set showing the best termination in the AF 
simulation showed high agreement with the clinically 
chosen most effective lesion set. Based on these results, 
Shim et al. conducted a prospective randomized clinical 
trial, CUVIA-AF I, which compared the effectiveness of 

Fig. 4  Visualization of 3D voltage maps, action potential curves, and four different indicators for electroanatomical analysis-based virtual ablation 
based on the similarity of clinical versus virtual voltage maps. A Results of four different indicators analyzed in reproducible condition control for AF 
driver ablation. B Differences in the electrogram amplitudes simulated with three types of multi-electrode catheters with different electrode sizes 
and arrangements under the same clinical conditions



Page 6 of 9Kwon et al. Int J Arrhythm           (2021) 22:21 

the extra-PV ablation lesion set determined by compu-
tational modeling and the operator’s experience with 
108 patients with persistent AF (Fig. 6A) [48]. Kim et al. 
demonstrated that modeling-guided AF ablation was 
superior to empirical ablation rhythm outcomes after 
long-term follow-ups of this randomized clinical trial 
for more than 32  months [49]. Although CUVIA-AF 

I was a prospective study, the cardiac CT data of each 
target patient were delivered to the core laboratory six 
hours before the procedure, and a simple human atrial 
cell model was applied to the left atrial anatomy. Boyle 
et al. published a computational modeling-guided rotor 
ablation as a proof of concept study targeting the rota-
tional reentry around the atrial scar characterized by 

Fig. 5  Effect of PV reentry and ganglionated plexi ablation after PV triggers in Phase 3 early after depolarization via autonomic nerve modeling. AF 
computational modeling of cardiac autonomic nerve effects, which is difficult to perform clinically or experimentally, will enable further studies for 
AF initiation mechanisms. A An example of ganglionated plexi (GP) modeling. B Abnormal depolarization was observed after a change of pacing 
cycle length. C 3D action potential map showing pulmonary-vein automaticity in 3D left atrium model with GP. D AF was terminated after virtual 
circumferential pulmonary vein isolation including GP. Images were taken from [43]

Fig. 6  Clinical trial outcomes of CUVIA-AF I and CUVIA-AF II using AF computational modeling. A CUVIA-AF I compared the effectiveness of the 
extra-PV ablation as determined by computational modeling and the operator’s experience. Image was taken from [49]. B CUVIA-AF II evaluated the 
effect of additional DF ablation by AF-DF maps. Both clinical trials were analyzed during the clinical PV isolation procedure



Page 7 of 9Kwon et al. Int J Arrhythm           (2021) 22:21 	

late gadolinium enhancement of cardiac MRI image 
[42].

After that, we upgraded to CUVIA version 3.0 to fur-
ther improve the computational speed. This version is an 
AF simulation that reflects anatomy, histology, and elec-
trophysiology by applying the endocardial voltage and 
local activation maps acquired at the beginning of the AF 
ablation procedure, enabling DF analysis within 40  min 
[31, 32]. Accordingly, another randomized clinical trial, 
CUVIA-AF II, was conducted to compare and evalu-
ate the effect of additional DF ablation by analyzing the 
onsite-acquired AF-DF map during the PV isolation pro-
cedure (Fig.  6B). CUVIA-AF II consistently confirmed 
the rhythm outcome of the virtual modeling-guided AF 
ablation was superior to empirical ablation in patients 
with persistent AF (data not shown). Although extra-PV 
foci are a major cause of recurrence in persistent AF, the 
appropriate target set is unclear with the current map-
ping technology. Therefore, computational modeling-
guided AF ablation will be an important breakthrough 
in targeting the appropriate extra-PV foci and improving 
the results of future procedures.

Computational modeling for virtual antiarrhythmic drugs
In the application of computational modeling, the vir-
tual AAD test is much more complicated than virtual 
AF ablation, which tests the effect of a simple conduc-
tion block. Moreover, since patch-clamp studies verifying 
the various ion channel effects of AADs in human atrial 
cells are very limited, we needed to borrow the results of 
animal cellular experiments (Table 2). Hwang et al. con-
ducted virtual AAD tests in realistic AF computational 

modeling that applied atrial anatomy, histology, and elec-
trophysiology using the data of 20 patients who under-
went endocardial voltage mapping at the time of AF 
catheter ablation [39]. Through computational modeling, 
they evaluated personalized electrophysiological effects 
and wave-dynamics changes after AAD administration in 
a dose-dependent manner and demonstrated the differ-
ence in AAD response according to the PITX2 genotype. 
Based on this proof of concept study, we are preparing 
another prospective randomized clinical trial, CUVIA-
AF III, which will compare and evaluate the effectiveness 
of virtual AAD-guided medical therapy.

Current limitation and future perspectives
The current AF computational modeling has several limi-
tations, such as monolayer, image dependency, individual 
bias by segmentation, and overcoming of computation 
time for real-time. However, the machine learning-accel-
erated computational fluid dynamics technology recently 
introduced by Kochkov et al. [65] has potential for real-
time AF modeling, and graph- and mesh-based deep 
learning technology can be expected to be applied as a 
cutting-edge diagnostic technology using the simulation 
results. As computational power continues to improve 
along with the development of artificial intelligence, the 
clinical application of AF computational modeling will be 
a popular diagnostic method in the future.

Conclusions
AF computational modeling will be utilized as an impor-
tant breakthrough to improve the rhythm outcome of 
medical or interventional AF management. Various AF 

Table 2  References for atrial cell ion currents depending on AADs

AADs Referencew Animal/human model Method Ion current change

Amiodarone
(5 μM, 10 μM)

Varela et al. [50] Canine atrial model Microelectrode recording and patch-
clamp

gK1, gKur, gNa, gKr, gCaL, gKs
Ach

Sotalol
(60 μM, 10 mM)

Ducroq et al. [51]
Lin et al. [52]

Rabbit/Human embryonic kidney cells
Xenopus oocytes

Bipolar Ag electrode recoding and 
patch clamp
Two-electrode voltage clamp

gNa, gKr, gKs

Dronedarone
(3 μM, 10 μM)

Chen et al. [53]
Gautier et al. [54]
Ji et al. [55]
Wegener et al. [56]

Rat
Guinea pig ventricular cardiomyocyte
Dog ventricular myocytes
Guinea pig myocytes

Whole-cell, perforated patch voltage-
clamp

gCaL, gKs, gNa, gK1, gKr, gCaL

Flecainide
(5 μM, 15 μM)

Geng et al. [57]
Yue et al. [58]
Wang et al. [59]
Hilliard et al. [60]

Human pluripotent stem cell-derived 
ventricular cardiomyocyte
Human right atrial appendage
Human pluripotent stem cell-derived 
ventricular cardiomyocyte
Canine, murine ventricular model

Whole-cell patch voltage clamp, micro‑
scope, and confocal laser-scanning unit

gNa, gKur, gNa, gto, gCaL

Propafenone
(5 μM, 10 μM)

Wang et al. [61]
Paul et al. [62]
Seki et al. [63]
Delgado et al. [64]

Human Embryonic kidney cells
Human atrial myocytes
Guinea pig ventricular myocytes

Whole-cell patch voltage clamp gNa, gto, gCaL, gKur, gKr,
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simulation models are now just around the corner for 
clinical applications.
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