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Abstract 

Background  Previous studies have quantified repolarization variability using time-domain, frequency-domain and 
nonlinear analysis in mouse hearts. Here, we investigated the relationship between these parameters and ventricular 
arrhythmogenicity in a hypokalaemia model of acquired long QT syndrome.

Methods  Left ventricular monophasic action potentials (MAPs) were recorded during right ventricular regular 8 Hz 
pacing during normokalaemia (5.2 mM [K+]), hypokalaemia modeling LQTS (3 mM [K+]) or hypokalaemia with 0.1 mM 
heptanol in Langendorff-perfused mouse hearts.

Results  During normokalaemia, mean APD was 33.5 ± 3.7 ms. Standard deviation (SD) of APDs was 0.63 ± 0.33 ms, 
coefficient of variation was 1.9 ± 1.0% and the root mean square (RMS) of successive differences in APDs was 
0.3 ± 0.1 ms. Low- and high-frequency peaks were 0.6 ± 0.5 and 2.3 ± 0.7 Hz, respectively, with percentage powers 
of 38 ± 22 and 61 ± 23%. Poincaré plots of APDn+1 against APDn revealed ellipsoid morphologies with SD along the 
line-of-identity (SD2) to SD perpendicular to the line-of-identity (SD1) ratio of 4.6 ± 1.1. Approximate and sample 
entropy were 0.49 ± 0.12 and 0.64 ± 0.29, respectively. Detrended fluctuation analysis revealed short- and long-term 
fluctuation slopes of 1.62 ± 0.27 and 0.60 ± 0.18, respectively. Hypokalaemia provoked ventricular tachycardia in six of 
seven hearts, prolonged APDs (51.2 ± 7.9 ms), decreased SD2/SD1 ratio (3.1 ± 1.0), increased approximate and sample 
entropy (0.68 ± 0.08 and 1.02 ± 0.33) and decreased short-term fluctuation slope (1.23 ± 0.20) (ANOVA, P < 0.05). Hep-
tanol prevented VT in all hearts studied without further altering the above repolarization parameters observed during 
hypokalaemia.

Conclusion  Reduced SD2/SD1, increased entropy and decreased short-term fluctuation slope may reflect arrhythmic 
risk in hypokalaemia. Heptanol exerts anti-arrhythmic effects without affecting repolarization variability.
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Introduction
Long QT syndrome (LQTS) is an important clinical 
condition predisposing to the occurrence of ventricular 
tachyarrhythmias, which can lead to sudden cardiac 
death. It can have congenital or acquired causes, the latter 
reflected by electrolyte disturbances such as hypokalemia 
or certain drugs that block potassium channels. Of 
these, hypokalaemia is the commonest electrolyte 
abnormality observed in patients who are admitted to 
the hospital [1] and is an important cause of arrhythmias 
and associated mortality clinically [2]. It is frequently 
observed in patients with pre-existing heart conditions 
[3–5]. Previously, several important re-entrant substrates 
of hypokalaemia have been identified using pre-clinical 
models [6–9]. These include repolarization abnormalities 
in the form of action potential prolongation, increased 
transmural dispersion of repolarization, reduced 
refractoriness, steep restitution gradients and increased 
amplitude of repolarization alternans [10, 11].

Moreover, altered beat-to-beat variations in the repolari-
zation time-course have been associated with arrhythmo-
genesis in other pharmacological or disease models [12, 
13]. For example, higher degrees of short-term repolari-
zation variability using Poincaré plot analysis were asso-
ciated with the development of ventricular arrhythmias 
in dogs [14]. Moreover, a combined experimental and 
computational approach associated higher repolarization 
variability with pro-arrhythmic abnormalities [15]. Finally, 
high entropy was shown to predict arrhythmic outcomes 
following gap junction and sodium channel inhibition 
in a mouse model [16]. However, whether variability or 
complexity of beat-to-beat repolarization variability plays 
a role in hypokalaemia modeling LQTS has never been 
studied. We hypothesized that increased repolarization 
variability contributes to arrhythmic substrate in an exper-
imental mouse model of LQTS using hypokalaemia.

Materials and methods
This study received approval from the University of Cam-
bridge (Approval Number: BB/G017565/1). The method-
ology used in this study has previously been described by 
us in detail. The reader is directed to this publication for 
further details [16]. Langendorff-perfused mouse hearts 
were used for the experiments, as described previously 
[17–19]. Monophasic action potential (MAP) waveforms 
were obtained from the left ventricular epicardium during 
right ventricular stimulation. MAP waveforms must have 
met established criteria for MAP signals and those that did 

not were rejected [20, 21]. They must have stable baselines, 
fast upstrokes, with no inflections or negative spikes, and 
a rapid first phase of repolarization. 0% repolarization was 
measured at the peak of the MAP and 100% repolariza-
tion was measured at the point of return of the potential to 
baseline [20, 22, 23].

Results
Action potential duration variability determined using 
time‑domain methods
Our previous work has reported the pro-arrhythmic 
effects of hypokalaemia and anti-arrhythmic effects of 
0.1  mM heptanol under hypokalaemic conditions [24] 
and also the time- and dose-dependent effects of hep-
tanol between 0.1 and 2 mM [25, 26]. This is an extension 
of the previously work by examining the beat-to-beat 
variability in repolarization durations of monophasic 
action potential (MAP) time series data over 20-s peri-
ods. Typical examples of MAP waveforms, time series 
and histograms of action potential durations (APDs) at 
90% repolarization for normokalaemia, hypokalemia 
alone or in the presence of 0.1 mM heptanol are shown 
in Fig. 1A–C, respectively. Time-domain analysis demon-
strated a mean APD90 of 33.5 ± 3.7 ms (Fig. 2A), standard 
deviation (SD) of APDs of 0.63 ± 0.33 ms (Fig. 2B), coef-
ficient of variation (CoV) of 1.9 ± 1.0% (Fig. 2C), and root 
mean square (RMS) of successive differences in APDs of 
0.3 ± 0.1 ms (Fig. 2D). Hypokalemia prolonged APD90 to 
51.2 ± 7.9 ms without significantly altering the remaining 
parameters (ANOVA, P > 0.05). After further treatment 
with heptanol, all of the above parameters remained 
unaltered (ANOVA, P > 0.05).  

Action potential duration variability determined using 
frequency‑domain methods
Fast Fourier Transform was used to generate frequency 
spectra, with examples obtained during normokalaemia, 
hypokalemia alone or in the presence of 0.1 mM heptanol 
are shown in Fig.  3A–C. Frequency-domain analysis 
revealed that the peaks for very low-, low- and high-fre-
quency were 0.03 ± 0.01, 0.58 ± 0.46 and 2.30 ± 0.74 Hz, 
respectively (Fig.  4A–C). Their corresponding powers 
took values of 0.00 ± 0.01, 0.22 ± 0.28 and 0.23 ± 0.18 
ms2, respectively (Fig. 4D–F). The low-frequency to high-
frequency ratio was 0.95 ± 0.98 (Fig. 4G) and total power 
(in log units) was − 1.25 ± 1.11 (Fig.  4H). Their percent-
age powers were 1.2 ± 2.0, 38.3 ± 22.4 and 60.5 ± 23.5% 
(Fig.  4I–K). None of these parameters was altered by 



Page 3 of 11Tse et al. International Journal of Arrhythmia            (2023) 24:2 	

hypokalemia alone or in the presence of 0.1 mM heptanol 
(ANOVA, P > 0.05).

Action potential duration variability determined using 
nonlinear methods
Poincaré plots, which plotted APDn+1 against APDn, 
were generated (Fig. 5A–C). Ellipsoid shapes of the data 
points were observed for the different hearts studied. The 

SD1 (SD perpendicular to the line-of-identity), SD2 (SD 
along the line-of-identity) and SD2/SD1 ratio are shown 
in Fig.  6A–C, taking values of 0.19 ± 0.08, 0.87 ± 0.46 
and 4.60 ± 1.07, respectively. Approximate and sam-
ple entropy were 0.49 ± 0.12 (Fig.  6D) and 0.64 ± 0.29, 
respectively (Fig.  6E). Detrended fluctuation analysis, 
which expressed the detrended fluctuations F(n) as a 
function of n in a logarithmic-logarithmic scale was 
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Fig. 1  MAP traces, time series and histograms of APDs from a representative heart before (A) or after the application of experimental hypokalaemia 
(B) and hypokalaemia with 0.1 mM heptanol (C)



Page 4 of 11Tse et al. International Journal of Arrhythmia            (2023) 24:2 

Fi
g.

 2
 T

im
e-

do
m

ai
n 

an
al

ys
is

 y
ie

ld
in

g 
m

ea
n 

A
PD

 (A
), 

st
an

da
rd

 d
ev

ia
tio

n 
(S

D
) o

f A
PD

s 
(B

), 
co

effi
ci

en
t o

f v
ar

ia
tio

n 
(C

oV
) (

C)
, a

nd
 ro

ot
 m

ea
n 

sq
ua

re
 (R

M
S)

 o
f s

uc
ce

ss
iv

e 
di

ffe
re

nc
es

 o
f A

PD
s 

(D
) (
n 
=

 6
) 

(n
 =

 7
 h

ea
rt

s)



Page 5 of 11Tse et al. International Journal of Arrhythmia            (2023) 24:2 	

conducted (Fig.  7A–C). This revealed short- and long-
term fluctuation slopes of 1.62 ± 0.27 (Fig.  7D) and 
0.60 ± 0.18 (Fig.  7E), respectively. Hypokalemia signifi-
cantly decreased SD2/SD1 ratio to 3.1 ± 1.0, increased 
approximate and sample entropy to 0.68 ± 0.08 and 
1.02 ± 0.33 and decreased short-term fluctuation slope to 
1.23 ± 0.20 (ANOVA, P < 0.05). After treatment with hep-
tanol, no further changes in the above parameters were 
observed (ANOVA, P > 0.05).   

Discussion
In this study, we examined the effects of experimen-
tal hypokalemia modeling acquired long QT syndrome 
on beat-to-beat variability in APD using time-domain, 
frequency-domain and nonlinear analyses. Our main 
findings are that 1) increased arrhythmogenicity in 
hypokalemia was associated with prolonged APD, 
decreased SD2/SD1 ratio, increased approximate and 
sample entropy, and a decrease in short-term fluctuation 
slope; 2) heptanol exerted anti-arrhythmic effects despite 

leaving the hypokalemia-induced repolarization abnor-
malities unaltered.

Beat-to-beat variability in repolarization time-courses 
is a normal physiological phenomenon reflecting stochas-
tic fluctuations in ion channel gating. Previous reports 
demonstrate that this variability is altered in pro-arrhyth-
mic states. For example, higher degree of short-term 
variability determined using the Poincaré method was 
detected before the occurrence of torsade de pointes with 
reduced intercellular coupling in a canine model [14]. 
Secondly, computational modeling efforts complemented 
by experimental data suggested that higher variability 
was associated with pro-arrhythmic abnormalities using 
similar Poincaré plots [15]. Such a temporal variability in 
repolarization provide incremental value for arrhythmic 
risk stratification in human subjects with non-ischemic 
heart failure [27]. Recently, our group reported the use of 
time-domain, frequency-domain and fractal complexity 
analysis for assessing repolarization variability of action 
potential waveforms recorded from mouse hearts [28]. 

Fig. 3  Examples of frequency spectra using the Fast Fourier Transform method from a representative heart before (A) or after the application of 
experimental hypokalaemia (B) and hypokalaemia with 0.1 mM heptanol (C)
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This was subsequently extended to demonstrations that 
nonlinear measures of repolarization variability, such 
as SD2/SD1, entropy, and fluctuation slope can predict 
ventricular arrhythmogenesis in mouse hearts using 
the gap junction and sodium channel blocker, heptanol 
[16]. The present work extends these findings by demon-
strating that such measures of repolarization variability 
can similarly reveal re-entrant substrate in the context 
of acquired LQTS and represent biomarkers that can 
improve risk stratification. These findings have clinical 
implications given recent demonstrations of the asso-
ciation between increased beat-to-beat variability in the 

electrocardiographic T-wave with sudden cardiac death 
[29], but it remains to be elucidated whether the nonlin-
ear measures would predict ventricular arrhythmias or 
sudden cardiac death in the clinical setting [30].

Previous studies have reported alterations in beat-to-
beat repolarization variability with differing degrees of 
gap junction coupling using time-domain methods. Thus, 
single ventricular cardiomyocytes isolated from canine 
hearts showed a baseline level of APD variability [31]. 
When two cardiomyocytes were electrically coupled, 
this variability was attenuated [31]. These experimental 
findings were supported of those from computational 

Fig. 4  Peaks for very low- (A), low- (B) and high-frequency (C), their corresponding powers (D–F), low-frequency to high-frequency ratio (G) and 
total power (H). The percentage powers for very low- (I), low- (J) and high-frequency (K) bands (n = 7 hearts)
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Fig. 5  Representative Poincaré plots of APDn+1 against APDn with SD along the line-of-identity (SD1) and SD perpendicular to the line-of-identity 
(SD2) before (A) or after the application of experimental hypokalaemia (B) and hypokalaemia with 0.1 mM heptanol (C) (n = 7 hearts)
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modeling studies, reporting higher repolarization vari-
ability with lower level of intercellular coupling [32]. In 
the present work, APD variability was not significantly 
higher after introduction of heptanol. Some possible 
reasons could explain the present findings. For example, 
heptanol has multiple targets, such as potassium and cal-
cium channels [13]. It was previously demonstrated that 
beat-to-beat variability is affected by not only the mean 
APD but also the pacing rate [33]. Therefore, pacing rate 
was fixed in this study to exclude its possible effects on 
variability. Future studies should systematically explore 
the relationship between pacing rate and different meas-
ures of variability. The anti-arrhythmic effects of hep-
tanol can be attributed to its actions in prolonging the 
ventricular effective refractory period, which would lead 
to increase in the excitation wavelength [24].

Our findings in the mouse are in keeping with those 
from clinical studies. In heart failure patients, higher 
approximate entropy of the interval between Rpeak and 
Tpeak were predictive of appropriate ICD shocks and 
death [34]. Moreover, in patients who have implant-
able cardioverter-defibrillator for primary prevention, 
high entropy of QT intervals also predicted ventricu-
lar arrhythmogenesis and mortality [35]. This study 
extends these findings by quantifying entropy using 
action potential time series data recorded from iso-
lated hearts that are free from autonomic influence 
and associated increased entropy with ventricular 
arrhythmogenesis under hypokalaemic conditions. 
Interestingly, our study found that it was possible to 

reduce arrhythmogenicity in the presence of high vari-
ability in beat-to-beat repolarization. Instead, the anti-
arrhythmic effects are instead attributed to increases 
in tissue refractoriness, which was initially reduced by 
hypokalemia [24]. These findings are in keeping with 
known effects of different anti-arrhythmic agents. For 
example, class III and class IV anti-arrhythmic agents 
inhibit potassium and calcium channels, respectively, 
yet they increase beat-to-beat variability for two rea-
sons. Firstly, the inward calcium current has the high-
est amplitude at the beginning of the plateau phase of 
cardiac repolarization, and this is a powerful modula-
tor of subsequent potassium channel activation [36]. 
Secondly, the membrane resistance is high during 
the late phase of repolarization [31], and any small 
increase in the net inward current (e.g., produced by 
potassium channel block) can lead to larger varia-
tion in APD [37, 38]. Together, these findings would 
suggest multiple interacting mechanisms that are 
important determinants of arrhythmogenesis. The 
implications are that patients who are suffering from 
hypokalaemia at an inpatient setting could benefit 
from not only continuous monitoring but its real-time 
quantification of repolarization variability and the QT 
intervals. This could theoretically provide warning 
messages for patients at immediate risks of develop-
ing ventricular arrhythmias [39]. A limitation is that 
the possible modifying effects of age on hypokalaemia-
related electrophysiology and arrhythmogenicity were 
not explored. Given that there is an age-dependent 

Fig. 6  Bar charts plotting SD perpendicular to the line-of-identity (SD1) (A), SD along the line-of-identity (SD2) (B), SD2/SD1 ratio (C), the 
approximate entropy (D) and the sample entropy (E) (n = 7 hearts)
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Fig. 7  Detrended fluctuation analysis plots expressing detrended fluctuations F(n) as a function of n in a log–log scale before (A) or after the 
application of experimental hypokalaemia (B) and hypokalaemia with 0.1 mM heptanol (C). Short-term (D) and long-term (E) fluctuation slopes 
(n = 7 hearts)
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increase in QT intervals [40], whether increasing 
age would interact with hypokalaemia to exacerbate 
arrhythmogenic or electrophysiological abnormalities 
remain to be elucidated. Finally, wild-type mice from 
the 129 genetic background were used. Previously 
studies have reported the differing effects of genetic 
background on electrophysiology [41, 42]. Future 
studies should therefore be conducted to explore the 
effects of hypokalaemia in different genetic strains.

Conclusions
Reduced SD2/SD1 and increased entropy and decreased 
short-term fluctuation slope may reflect arrhythmic 
risk in hypokalaemia. Heptanol exerts anti-arrhythmic 
effects without significantly influencing repolarization 
variability.

Abbreviations
APD	� Action potential duration
ICD	� Implantable cardioverter-defibrillator
LQTS	� Long QT syndrome
VT	� Ventricular tachycardia
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