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Abstract 

Sodium-glucose co-transporter 2 inhibitors (SGLT2is), primarily used for managing type 2 diabetes mellitus, have 
recently gained attention for their potential cardiovascular benefits. This review explores the emerging evidence 
surrounding the association between SGLT2is and arrhythmias. Initial studies and large cardiovascular outcome tri-
als have indicated that SGLT2is may reduce major adverse cardiovascular events, including HFHs, which inherently 
suggests a potential anti-arrhythmic role. Mechanistic insights propose that SGLT2is may exert their anti-arrhythmic 
effects by modulating cardiac ion channels, thereby impacting cardiac action potentials. Direct clinical evidence 
linking SGLT2 is to reduced arrhythmias remains limited but evolving. Potential implications of these findings could 
revolutionize treatment approaches, expanding the indications for SGLT2is prescriptions beyond the diabetic popula-
tion and possibly providing a novel therapeutic avenue for patients at risk of arrhythmias. However, the exact mecha-
nism, efficacy, and safety profile need further investigation. While various post-hoc and meta-analyses shed light 
on the topic, prospective, randomized controlled trials are warranted to explicate the potential of SGLT2is in arrhyth-
mia management, their place in clinical guidelines, and their overall impact on patient outcomes.

Background
Sodium-glucose co-transporter-2 inhibitors (SGLT2is), 
commonly referred to as the “flozin” group of drugs, were 
initially approved by the U.S. Food and Drug Adminis-
tration (FDA) for managing hyperglycemia in patients 
with type 2 diabetes mellitus (T2DM). They work by 
blocking SGLT2 transporters in the proximal tubules of 
the kidneys. This inhibition decreases glucose reabsorp-
tion, increasing glucose excretion in the urine and con-
sequently lowering blood glucose levels. The first SGLT2i 
to gain FDA approval was canagliflozin in March 2013 
[1]. This followed the approval of dapagliflozin in Janu-
ary 2014 [2] and empagliflozin in August 2014 [3]. These 
medications are indicated as pharmacological adjuncts to 

exercise and diet to improve blood sugar management in 
adults with T2DM.

Since their initial approval for T2DM, some SGLT2is 
have garnered additional indications related to heart 
failure and kidney disease. The FDA has approved dapa-
gliflozin and empagliflozin for adults with heart failure 
with reduced ejection fraction (HFrEF), irrespective of 
the presence of T2DM to be added to standard phar-
macological therapy. This approval was based on the 
outcomes of the DAPA-HF [4] and EMPEROR-reduced 
[5] trials which demonstrated that these drugs could 
considerably lower the risks of cardiovascular death and 
heart failure hospitalizations (HFH) in these patients. In 
2020, canagliflozin received approval for treating diabetic 
kidney disease, stemming from the CREDENCE trial’s 
results [6]. The CANVAS trial [7] also revealed that it 
could reduce the incidence of major adverse cardiovas-
cular events (MACE), such as heart attacks, strokes, or 
deaths due to cardiovascular causes in T2DM adults with 
known cardiovascular disease. Following the EMPEROR-
preserved trial results in 2022 [8], empagliflozin was 
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approved for the adjunctive treatment of heart failure 
with preserved ejection fraction (HFpEF). Additionally, 
based on the DELIVER trial outcomes [9], the European 
Union approved dapagliflozin for treating HFpEF.

These extended indications underscore the multi-sys-
tem advantages of SGLT2is, which extend beyond their 
initially studied antihyperglycemic effects. Other notable 
outcomes, like a decrease in sudden cardiac death (SCD), 
emerged from these trials [10], which prompted more 
in-depth investigations into the SGLT2is effects on ven-
tricular arrhythmias (VAs), a primary cause of SCD in 
HF patients [11]. Subsequent post-hoc analyses of data-
sets from these prospective trials have indicated a statis-
tically significant association with arrhythmia incidence 
when using SGLT2is. This review begins by examining 
the independent arrhythmia risks in HF and T2DM, lay-
ing a foundation to help understand SGLT2is’ therapeu-
tic implications for arrhythmias. Finally, we conclude by 
compiling evidence drawn from contemporary scientific 
literature on this topic.

Understanding the increased risk of arrhythmias 
with T2DM
Numerous research studies have found a robust asso-
ciation between T2DM and atrial tachyarrhythmias. 
A meta-analysis conducted by Huxley et  al. in 2011, 

which incorporated various cohort studies, deduced 
that T2DM correlated with a 40% increased risk of 
atrial fibrillation (AF) [12]. Similarly, the Rotterdam 
study found that diabetes correlated with a 1.4-fold 
surge in the risk of AF, despite accounting for other risk 
determinants like age, hypertension, and heart failure 
[13]. The prospective Danish Diet, Cancer, and Health 
study also recorded a 34% escalated risk of AF among 
diabetes patients, even after adjustments for other rec-
ognized risk contributors [14].

Various studies also discuss the association of T2DM 
with VAs. One such study by Weidner et al. investigated 
the relationship between T2DM patients and mortal-
ity secondary to ventricular tachyarrhythmias [15] and 
found that T2DM was independently correlated with a 
heightened risk of all-cause mortality in patients with 
ventricular tachyarrhythmias, unexplained by other 
risk factors such as age, sex, or other comorbidities. 
Predominant mechanisms deal with cardiac fibrosis, 
which is a known contributor to the arrhythmogenic 
substrate in both atrial and VAs. Studies have shown 
that diabetes can induce miR-29a transcription, leading 
to enhanced cardiac fibrosis and specifically increased 
vulnerability to VAs [16], along with QT interval 
changes [17], and alteration in levels and activities of 
calcium and potassium channels, increasing the sus-
ceptibility to VAs [18] (Fig. 1).

Fig. 1 Association between T2DM and elevated risk of atrial fibrillation
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Understanding the increased risk of arrhythmias 
with HF
Patients with heart failure suffer from concomitant devel-
opment of arrhythmias [19]. HFH are rising, and a sig-
nificant number of these cases might be connected to 
supraventricular arrhythmias (SVAs), including AF or 
other SVAs [20]. An association between these disease 
processes has been suspected since results from the 
Framingham Heart Study, where 26% of patients who 
were diagnosed with either new onset HF or AF, devel-
oped concomitant AF and HF [21]. AF alone raises the 
risk of death and stroke; and HF patients often experi-
ence thromboembolism complications and undetected 
AF [22], which often are the first manifestation of AF in 
these patients [23]. Additionally, bradyarrhythmia condi-
tions such as sinus bradycardia, tachy-brady syndrome, 
and atrioventricular blocks are also frequent in HF 
patients [11, 24].

In HF patients, SCD is a predominant cause of fatality 
and is commonly related to heart rhythm disturbances, 
mainly VAs [11]. A study by Stevenson et al. (1983) found 
that patients with advanced HF had a high incidence of 
VAs, and these were linked to an increased risk of SCD 
[25] (Fig. 2).

Electrical remodeling, myocardial fibrosis, ischemic 
arrhythmogenic foci, dysregulation of intracardiac 

calcium, and neurohormonal activation through elevated 
levels of renin, angiotensin, and aldosterone are the pri-
marily proposed mechanisms behind the increased risk 
of arrhythmias in HF patients [26] (Fig. 3).

SGLT2 inhibitors: What are they, and how do they 
work?
The SGLT2 transporters belong to a broad group of 
membrane proteins in charge of the transport of various 
solutes, driven by a sodium gradient. Two primary SGLTs 
exist within the human body: SGLT1 and SGLT2. The 
SGLT2 symporter predominantly resides in kidney tis-
sues, while SGLT1 has a broader distribution, appearing 
in the kidneys, small bowel, heart, and skeletal muscles.

In the kidney, both SGLT1 and SGLT2 play pivotal roles 
in sodium and glucose reabsorption within the proximal 
convoluted tubules. Their fundamental functional role is 
the complete reabsorption of filtered glucose, which pre-
vents energy wastage through glycosuria. SGLT2is work 
by blocking these channels, resulting in glucose excretion 
via urine and consequently reduced serum glucose levels. 
This action enhances HbA1c levels, mitigating both the 
macrovascular and microvascular complications linked 
to T2DM [27].

Alongside glycosuria, SGLT2 inhibition instigates 
natriuresis, leading to a negative salt and water balance. 

Fig. 2 Association between HF and elevated risk of arrhythmias
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This process contributes to improved blood pressure and 
counteracts the tubuloglomerular feedback stimulation 
[28]. Clinical studies involving patients, both with, and 
without diabetes have also noted substantial reductions 
in albuminuria levels [29]. SGLT2is are recommended 
for diabetic individuals aiming for weight loss, given their 
role in promoting caloric loss associated with diabetes 
[30]. Additionally, these inhibitors enhance the release of 
hypoxia-inducible factors (HIF 1 and 2) from the juxtaglo-
merular apparatus and alleviate anemia through EPO 
release [31].

Natriuresis/diuresis, inducing ketone bodies and fatty 
acids utilization, reducing hyperinsulinemia, anti-inflam-
matory and anti-fibrotic effects, and reduction in epicar-
dial fat appear to be the primary mechanisms that mediate 
the cardiovascular protective effects demonstrated in the 
recent studies on both HFrEF and HFpEF patients [32] 
(Fig.  4). However, a more detailed scrutiny is needed to 
understand the proposed anti-arrhythmic properties of 
these drugs.

Proposed mechanisms for reduction 
of arrhythmias by SGLT2is
There are two main theories regarding the mechanisms 
of anti-arrhythmic properties of SGTL2is; the first being 
amelioration of mechanical factors, through a reduction 
in blood pressure (that reduces myocardial strain through 
reduced afterload) and reduced venous return, prevent-
ing excess dilation and stretch of the myocardium; both 
of which collectively reduce myocardial remodeling [33]. 
The second theory pertains to changes in the ionic bal-
ance within the myocardial cellular environment. Stud-
ies indicate that SGLT2is might indirectly influence 
arrhythmias by enhancing cardiac function and mitigat-
ing inflammation and oxidative stress, both of which are 
potential precursors to arrhythmias. Diminished activa-
tion of the cardiac NLRP3 (nucleotide-binding domain-
like receptor protein 3) inflammasome [34, 35] appears to 
be a well-studied mechanism, that improves myocardial 
functioning by reducing inflammation otherwise asso-
ciated with T2DM, thus preventing inflammation and 

Fig. 3 Relationship between T2DM, HF and arrhythmias
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fibrosis. Moreover, calcium ionophores seemed to blunt 
this effect, which hints at a dependence on intracardiac 
calcium levels. A study employing artificial intelligence 
determined that empagliflozin could potentially reverse 
59% of protein alterations associated with HFpEF [36]. 
The main mechanism was via inhibition of the NHE1 
 (Na+/H+ exchanger 1), rather than SGLT2 itself. Jiang 
et  al. also found similar findings in myocardial infarc-
tion (MI) mice models where empagliflozin was found to 
decrease cardiac fibrosis, and improve heart function and 
survival [37]. This action primarily affects cardiomyocyte 
oxidative stress and influences factors like cardiomyocyte 
stiffness and systemic inflammation, through concomi-
tant changes in cytoplasmic and mitochondrial calcium 
levels that appeared to be the trigger for myocyte death. 
Alterations in the sympathetic nervous system through 
reduction of TNF-α and elevation of IL-1β levels by dapa-
gliflozin have also been demonstrated in mice studies, 
which could be attributed to both cardio and renal pro-
tective effects of the class of drugs [38]; which has also 

been concluded subsequently by Shimizu et al. [39] from 
the EMBODY trial data. Another animal study with mice 
on empagliflozin concluded that the drug prevented left 
atrial changes in the presence of diabetes mellitus; most 
possibly through the peroxisome proliferator-activated 
receptor-c coactivator 1α (PGC-1α)/nuclear respiratory 
factor-1 (NRF-1)/mitochondrial transcription factor A 
(Tfam) signaling pathway [40]. This could be a poten-
tial mechanism specifically in the prevention of atrial 
arrhythmias. Lahnwong et al. [41] found that dapagliflo-
zin exerts significant cardio-protection against ischemic 
reperfusion injury in rats pretreated with dapagliflozin 
for 4 weeks before induced MI; however, no changes in 
PGC-1α were noted. They instead observed an increase 
in Bcl2 gene expression resulting in an anti-apoptotic 
mechanism. Other notable molecular mechanisms that 
have been found to play a role in post-MI cardiac remod-
eling benefits of SGLT2is are the upregulation of STAT3 
phosphorylation [42, 43]; increased ERK1/2 phospho-
rylation [44]; and regulation of cGH1 gene resulting in 

Fig. 4 Multisystemic benefits of SGLT2 inhibitors: beyond glycemic control
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increased nitric oxide and decreased free radicals like 
superoxide and nitro tyrosine through tetrahydrobiop-
terin [45].

Certain electrochemical mechanisms have also been 
suggested in the literature. SGLT2is have demonstrated 
positive effects on electrolyte balance, further reducing 
arrhythmia susceptibility [46]. Inhibition of the cardiac 
sodium current’s late component [35], and suppression of 
the sodium–hydrogen exchanger [47] appear to be signif-
icant among the studied ionic mechanisms. Modulation 
of electrical currents through the effects of secretome 
from epicardial fat has also been shown to be a prospec-
tive mechanism [48]. Sotagliflozin, which is an inhibi-
tor of both SGLT1 and SGLT2, has also been shown to 
reduce arrhythmias in in-vitro cardiomyocytes through 
a reduction in spontaneous calcium release events; 
which have been associated with increased arrhythmias 
in HFpEF [49]. Another proposed mechanism is a mod-
est increase in serum magnesium levels in patients on 
SGLT2is, observed from analysis of datasets from the 
SGLT2 HF trials [50], since a decreased magnesium level 
has been shown to increase sinus node automaticity and 
affect myocardial excitability, being an essential cofactor 
in the functioning of the  Na+/K+ ATPase pump [51].

Another mechanism that has gained interest is the 
SGLT1 distribution in cardiac myocytes, which have 
been shown to reduce oxidative stress by decreasing ROS 
through NADPH oxidase expression. SGLT1 has shown 
high affinity for empagliflozin [52]; while other animal 
studies have demonstrated that dapagliflozin and canagli-
flozin exert anti-oxidative properties through an SGLT1 
mediated mechanism [53, 54]. This is especially of inter-
est since SGLT1 has been shown to mediate ischemic 
injury through the upregulation of extracellular signal-
regulated kinases (ERKs) causing oxidative stress in mice 
[55].

The crux of whether the observed benefits are rooted 
in structural modifications or ionic shifts remains unre-
solved; or whether mediated through SGLT1 or SGLT2. 
The effect is likely to be a sequela of the intricate inter-
play between both the mechanical and electrochemical 
processes coupled with a collection of multiple subtle 
effects.

SGLT2 inhibitors and atrial 
tachyarrhythmias‑evidence from clinical studies
The major cardiovascular trials involving SGLT2is 
did not primarily focus on AF/AFL events. However, 
post-hoc analyses of these trials suggest potential anti-
arrhythmic effects. Notably, the DECLARE-TIMI 58 trial, 
as reported by Zelniker et al. [56], highlighted significant 
anti-arrhythmic effects of dapagliflozin. In contrast, trials 
like DAPA-HF [57], EMPA-REG [58], and CREDENCE 

[59] did not report substantial anti-arrhythmic outcomes. 
Despite this, various meta-analyses using SGLT2is trial 
data have indicated a statistical association between the 
use of SGLT2is and a reduction in atrial tachyarrhyth-
mias. It is important to recognize, however, that this evi-
dence is derived from post-hoc observations rather than 
from prospective studies specifically targeting AF burden 
as a primary outcome [56, 60–71]. These reveal a reduc-
tion in AF or AF/atrial flutter (AFL) composite outcome 
disease burden. A more detailed tabular representation of 
these articles, including relevant results, inclusion crite-
ria, and sample sizes, can be found in Table 1.

Interestingly, multiple studies found the most statisti-
cal significance with dapagliflozin [60, 62–64, 66, 67, 70]. 
This is likely attributed to the highest sample size and 
number of arrhythmic events reported in dapagliflozin 
trials. Certain studies performed an analysis after exclud-
ing the DECLARE TIMI-58 trial data, substantiating that 
the statistical significance was indeed due to the larger 
sample size, as the relationship vanished once this study 
data was removed [60, 62]. In Zheng et al.’s analysis [66], 
canagliflozin was a close second in terms of significance, 
but it didn’t reach statistical levels. Ong et al. found a sig-
nificant association only in patients on Dapagliflozin who 
had T2DM and CKD and were followed up for over a year 
[64]. Contrastingly, Sfairopoulous et  al. demonstrated 
statistical significance in empagliflozin, suggesting that 
the effect is not solely due to sample size disparity, even 
though their meta-analysis included more patients in the 
dapagliflozin group [70]. Chen et al. [69] focused on the 
link between SGLT2is and new-onset arrhythmias; where 
analysis revealed a benefit that was most pronounced in 
all-cause mortality but also significant in reducing the 
events of AF, SVAs, and VAs.

Li et  al. [63] compared the anti-arrhythmic effects of 
SGLT2is and GLP-1 (Glucagon-like peptide-1) agonists. 
They concluded a significant relationship with dapagli-
flozin, while dulaglutide was a close second but without 
statistical significance. Nevertheless, when comparing 
all SGLT2is and GLP-1 agonists holistically, no signifi-
cant difference between the two groups was found; even 
though Bonora et al. [72] concluded reduced AF-related 
adverse event reporting with SGLT2is compared to other 
anti-diabetic drugs.

Extrapolating the DECLARE TIMI-58 trial data, Zel-
niker et al. [56] found that similar statistical significance 
was achieved on removing the patients who reported a 
19% decrease in AF/AFL events within 2 weeks of HFH, 
and a 23% decrease in total AF/AFL events. This was also 
the case in patients who did not have any history of HFH 
or MI, which led them to conclude that the anti-arrhyth-
mic effect of dapagliflozin as observed in their analy-
ses, was independent of the cardiovascular mortality 
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benefits of the drug. One noteworthy prospective study 
conducted by Kishima et al. [73] distributed patients into 
tofogliflozin vs. anagliptin groups. The main outcome 
was an AF recurrence up to 1-year post-catheter abla-
tion, and a significant reduction in AF recurrence was 
observed in patients taking tofogliflozin, irrespective of 
blood glucose levels. While the study had a sample size 
of 70 patients, it is the only prospective study we came 
across involving SGLT2is, that looks at the occurrence 
of AF as a primary outcome. There is no evidence that 
suggests that the anti-arrhythmic benefit of SGLT2is is 
dependent on the T2DM disease severity, especially since 
the anti-arrhythmic benefit observed was irrespective of 
the blood glucose levels.

Despite the encouraging evidence suggesting the anti-
arrhythmic benefits of SGLT2is, several analyses pre-
sent contradicting evidence [59, 74–76]. For instance, 
Ouyang et  al. [75] did not find a statistically significant 
association between AF and SGLT2is, despite a large 
sample size in their analysis. Surprisingly, while analyz-
ing the EMPA-REG outcome trial data, Böhm et al. [58] 
found an increased incidence of new-onset AF in patients 
on empagliflozin, although their sample contained less 
than 10% of patients with HF and lacked baseline data on 
patients’ arrhythmic status.

The observed quantitative reduction in arrhythmia 
burden is likely a class effect of SGLT2 inhibitors, as 
demonstrated in the meta-analysis by Fernandes et  al. 
This analysis, encompassing canagliflozin, dapagliflozin, 
empagliflozin, and ertugliflozin, reported a 19% reduc-
tion in atrial arrhythmia incidence [67]. The compara-
ble sample sizes across each drug group further support 
the likelihood of a class-wide effect rather than an effect 
specific to any single agent. Recurrent AF after catheter 
ablation, and decreased rates of cardioversion or redo 
ablation [77] was also found to be class-specific, however 
the only prospective study that measures this outcome 
was performed with tofogliflozin [73, 78]. The observed 
reduction in AF/AFL-related complications with canagli-
flozin might be attributed to a drug-specific effect [76]. 
Nevertheless, further studies are warranted, particularly 
with other SGLT2is, where such outcomes are the pri-
mary endpoint.

SGLT2 inhibitors and ventricular tachyarrhythmias 
and SCD‑evidence from clinical studies
While multiple studies have found a significant asso-
ciation between atrial arrhythmias and SGLT2is, there 
seem to be fewer studies on VAs. It would be logical to 
think that SGLT2is, being proven to prevent ventricu-
lar remodeling, would significantly decrease the disease 
burden of VAs; however, the evidence appears to be 
inconsistent.

As with the atrial arrhythmias section, a concise tabu-
lar format of the relevant information of the studies can 
be found in Table  2. Hang Long Li conducted a robust 
meta-analysis that looked at outcomes including both 
atrial and VAs [61]. Along with a significant reduction in 
AF disease burden (as discussed in the previous section), 
the authors also found a 27% risk reduction in ventricu-
lar tachycardia in patients on SGLT2is, compared to pla-
cebo: including patients with T2DM, CKD, and HF.

Curtain et al.’s research, drawing data from the DAPA-
HF trial, showed that the addition of dapagliflozin to con-
ventional HF medications resulted in a 1.5% decrease in 
the combined event of VAs, resuscitated cardiac arrest, 
or SCD compared to those receiving a placebo [10]. This 
effect was even more pronounced in patients with NT 
pro-BNP levels below the median, suggesting potential 
enhanced benefits in the early stages of HFrEF. Fernandes 
et al. found decreased SCD rates in patients on SGLT2is, 
but no association with VA events. Notably, there were 
very few reported VA events in the study population, 
which significantly reduced the power of the analysis. 
This, however, is backed by an analysis by Oates et al. who 
considered SCD as a primary outcome and found similar 
findings [74]. Interestingly, when the patients were strati-
fied on Left Ventricular Ejection Fraction (LVEF) < 40%, 
the significance disappeared. The authors opine that 
this could be due to the low duration of follow-up. One 
important point to consider is that very few patients in 
these studies had a Cardiovascular Implantable Elec-
tronic Device, which may have led to substantial under-
reporting of arrhythmic events. Yin et al. also reported no 
significant association between ventricular fibrillation or 
ventricular tachycardia (VT) and SGLT2is, even though 
they identified a significant association with AF [71]. 
Hence, reduction in incident VAs and SCD events appear 
to be common class effects as evidenced by meta-analysis 
including multiple SGLT2is [61, 67].

The evidence, while dearth, much like with AF, appears 
to be conflicting. The relationship between AF and 
SGLT2is appears to be better studied with more studies 
elucidating on the mechanisms. However, von Lewinski 
et  al. [79] are currently conducting a noteworthy pro-
spective study (ERASe trial) on patients with reduced or 
mid-level EF. These patients have received Implantable 
Cardioverter Defibrillator + Cardiac Resynchronization 
Therapy (ICD ± CRT) therapy for over 3 months and have 
a history of VT. They are being subjected to ertugliflozin 
and a matching placebo. This trial stands out as the pio-
neering study examining the effect of ertugliflozin in HF 
patients with a non-preserved EF who are simultaneously 
on ICD ± CRT therapy, irrespective of their diabetes 
condition. Consequently, the ERASe trial might poten-
tially broaden the understanding of the role of SGLT2is 
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in enhancing cardiac remodeling, encompassing the 
decrease in VA load.

A salient question that emerges from this line of inquiry 
pertains to the differential outcomes among T2DM 
patients as compared to non-diabetic patients who are 
diagnosed with arrhythmias. Can we delineate a distinct 
therapeutic response based on the diabetic status of the 
patient? Furthermore, the distinction between atrial and 
VAs remains to be clarified: Do SGLT2is exhibit a pref-
erence in terms of their therapeutic efficacy toward one 
over the other?

Clinical implications
Should a significant association be confirmed between 
SGLT2is and decreased incidence of arrhythmias, it 
could lead to improved clinical outcomes for a broad 
spectrum of patients. Arrhythmias, particularly VAs, 
have been definitively linked to increased morbidity and 
mortality, including SCD. Reduction in these arrhyth-
mic events could lead to prolonged life expectancy and 
improved quality of life. SGLT2is might be combined 
with other anti-arrhythmic medications, enhancing their 
efficacy or even allowing dose reductions of other drugs, 
potentially minimizing side effects. It would also be ben-
eficial in HF patients since there is already a clear asso-
ciation between HF and arrhythmias, especially due to 
its role in preventing cardiac remodeling. Such approval 
would also necessitate rigorous post-marketing surveil-
lance to monitor for unanticipated adverse effects, espe-
cially when used in a broader population. Patients could 
have more options in their treatment arsenal, potentially 
leading to better disease management and improved out-
comes. The potential association between SGLT2is and 
reduced arrhythmia risk offers a promising avenue in car-
diovascular medicine. However, as with all medical inter-
ventions, the benefits must be weighed against potential 
risks, and a comprehensive, patient-centered approach 
should be maintained.

Additionally, certain preliminary studies have alluded 
to the potential of these inhibitors being particularly 
efficacious in the early stages of HF. Given this proposi-
tion, it becomes imperative to investigate whether their 
potency is indeed emphasized in the early phases of car-
diac dysfunction. Given that SGLT2is have already been 
integrated into the Guideline-Directed Medical Therapy 
(GDMT) for HF management [80], it becomes intrigu-
ing to extrapolate their efficacy concerning arrhythmic 
events, particularly when we consider the intricate inter-
play between T2DM, HF and arrhythmias. If a mortal-
ity benefit is established in this overlap, it would further 
emphasize the potential of SGLT2is in comprehensive 
cardiac care.

To solidify these potential benefits, well-designed, 
multi-centric prospective trials are crucial. These 
should ideally adopt a multi-centric framework, ensur-
ing a wide patient demographic and encompassing 
varied clinical settings, thereby improving the gen-
eralizability and applicability of the findings. Such 
endeavors would not only explain the pharmacological 
landscape of arrhythmia management but also guide 
future therapeutic strategies in cardiovascular care.

Conclusion
The current literature underscores that SGLT2is miti-
gate arrhythmic burden and arrhythmia-related adverse 
events in T2DM and HF patients. Consistent atrial and 
ventricular arrhythmia incidence reduction has been 
observed, and mostly appears to be an effect com-
mon to the class of drug. Numerous ongoing research 
endeavors are currently delving into the potential role 
of SGLT2is in the context of arrhythmia management 
[81–85]. These investigations aim to ascertain not 
only if SGLT2is indeed play a pivotal role but also to 
demarcate the precise extent of their influence. The 
anti-arrhythmic properties of these drugs are believed 
to stem from enhanced cardiac function, decreased 
myocardial scarring and improved electrolyte balance. 
Future investigations should focus on identifying the 
precise mechanisms through which SGLT2is confer 
these advantages and examining how diabetes severity 
influences the reduction of arrhythmias.
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