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Abstract 

Background New‑onset postoperative atrial fibrillation (nPOAF) is a common complication after cardiac surgery (30–
50%), being associated with unfavorable long‑term outcomes. Using the Society of Thoracic Surgeons National Adult 
Cardiac Database, we used machine learning (ML) to predict nPOAF and related 30‑day outcomes following mitral 
valve (MV) surgery. A total of 27,856 MV operations were performed at 910 centers between 7/1/2017 and 6/30/2020 
on patients without AF or a prior permanent pacemaker. The primary endpoint was nPOAF postoperatively. ML tech‑
niques utilized included penalized logistic regression, gradient boosting, decision trees, and random forests.

Results The overall incidence of nPOAF was 35.4% and that of new pacemaker insertion was 5.6%. Patients who 
developed nPOAF were older (67 ± 10 vs 60 ± 13 years), had more mitral valve stenosis (14.1% vs 11.7%), and hyperten‑
sion (72.1% vs 63.3%). They underwent more mitral valve replacement (39.1% vs 32.7%) and coronary artery bypass 
grafting (23.9% vs 16%). For predicting nPOAF, ML methods offer sensitivity, specificity and precision superior to logis‑
tic regression. The accuracy rate was identical with penalized and non‑penalized logistic regression (0.672).

Conclusions Predicting nPOAF and its short‑term sequelae following MV surgery remains highly challenging. 
Machine learning methods offer a moderate degree of improvement in predicting nPOAF even in large national‑level 
studies, in the absence of multi‑modal data, such as real‑time wearables data, electrocardiograms, heart rhythm moni‑
toring, or cardiac imaging.

Keywords Atrial fibrillation, Machine learning, Postoperative, Heart rhythm monitoring, Outcome prediction, Cardiac 
surgery

Background
Atrial fibrillation (AF) is the most common heart rhythm 
dysfunction in the USA, affecting more than 2 million 
individuals [1]. Its prevalence is expected to increase in 
the coming decades [1].

New-onset postoperative AF (POAF) is a common 
complication (30–50%) after cardiac surgery [1, 2]. It is 
associated with unfavorable near-term and long-term 
outcomes, including a higher risk of stroke, prolonged 
hospital length of stay, and strained hospital resources 
[3–5]. It is therefore important to develop methods to 
predict its occurrence. In our study, we adopted the 
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Society of Thoracic Surgeons (sts.org) definition for 
new-onset POAF: the occurrence of any postoperative, 
in-hospital, atrial fibrillation/flutter episode longer than 
1 h and/or requiring treatment [6, 7]. This definition 
applies only to patients who were not in AF at the start 
of surgery. Preoperative AF status was the first rhythm 
documented on the anesthesia record upon entry to the 
operating room. POAF diagnosis tools included ECG 
recording (1 or more leads), continuous ECG monitor-
ing for 48–72 h postoperatively, loop memory monitors, 
symptom event monitors, patch recorders, or implant-
able loop recorders.

The 2017 HRS/EHRA/ECAS/APHRS/SOLACE expert 
consensus statement on catheter and surgical ablation of 
atrial fibrillation identifies modifiable (e.g., hypertension, 
obesity, alcohol consumption) and non-modifiable (e.g., 
age, sex, race, family history) risk factors for developing 
atrial fibrillation during the life course [1]. Enhancing the 
ability to predict the risk of new-onset AF following car-
diac surgery may lead to better individualized treatment 
strategies [1]. State-of-the art machine learning methods 
have produced excellent results in surgical outcome pre-
diction [8–10]. Using data from the Society of Thoracic 
Surgeons (STS) Adult Cardiac Surgery Database (ACSD) 
retrospectively for patients undergoing MV surgery, we 
sought to determine whether machine learning methods 
produce superior new-onset POAF predictions com-
pared to standard methods.

Study population
The STS National ACSD version 2.9 was queried from 
July 1, 2017, to June 30, 2020. Deidentified data were 
obtained via provider user files, and included demo-
graphics, comorbid conditions, pre-/intra-/postopera-
tive characteristics, and 30-day outcomes. We included 
patients age ≥ 18  years who underwent elective surgi-
cal MV repair or replacement (with or without tricus-
pid valve surgery and PFO closure) via full conventional 
sternotomy, partial sternotomy, right thoracotomy, or 
robotic initial operative approach. We excluded patients 
who had: (1) a history of AF or a prior permanent pace-
maker, (2) a concomitant procedure for AF (cardiover-
sion, catheter ablation), (3) a transcatheter MV repair 
or replacement procedure, (4) a cardiac congenital or 
concomitant surgical procedure (aortic or pulmonic 
valve surgery, aortic aneurysm), (5) a heart/heart–lung 
transplant or the implantation of a VAD/temporary/per-
manent assist device, (6) a percutaneous or port access 
operative approach, or (7) other non-cardiac procedures. 
In Figure  1, Consolidated Standards of Reporting Tri-
als (CONSORT) diagram [11, 12] delineates the study 
cohort. The primary endpoint was the occurrence of de 
novo POAF postoperatively.

Missing data
For binary variables (‘Yes/No’), missingness was equated 
with a negative response (‘No’). Missing height and 
weight (n = 8 each), perfusion, and cross-clamp times 
(n = 59 and 89, respectively) were mean-imputed. Mode 
imputation was used when gender information was miss-
ing (n = 2).

Statistical analyses
Data were summarized using means/standard deviations, 
medians/interquartile ranges, and frequency counts/
percentages, as appropriate. Group comparisons, includ-
ing by POAF status, were based on the two-sample t test 
with unequal variances, Wilcoxon’s rank sum, and the 
Chi-square test.

To predict de novo POAF, we compared standard 
methodology (logistic regression) to several machine 
learning (ML) techniques: penalized logistic regres-
sion, random forest, and extreme gradient boosting 
(XGBoost) [13]. Preoperative MV lesion set information 
is presented in Supplemental Table  1. The list of vari-
ables used to predict POAF is available in Supplemental 
Table 2 and includes clinically important pre- and intra-
operative variables available. Training and testing data-
sets have been created by randomly splitting the study 
data in 70:30 ratio. Classification error calculated on the 
test dataset was defined as the number of incorrect pre-
dictions (false negatives or false positives) divided by the 
size of the validation dataset. Method performance was 
assessed and compared across the different classification 
approaches based on the following optimal threshold 
measures: the concordance index or the area under the 
receiver operating characteristic (AUROC) curve, the F1 
score, precision (or positive predicted value (PPV)), recall 
(sensitivity), accuracy, specificity, and negative predicted 
value (NPV). Test data permutation feature importance 
has been calculated based on the algorithm developed 
by Fisher et  al. (2019) [14] and uses classification error 
as loss function. Statistical significance was declared at 
two-sided 5% level, and there were no adjustments for 
multiplicity. All analyses have been completed in SAS v 
9.4 (SAS Institute, Cary, NC) and R v.4.1 (www.r- proje ct. 
org) using package mlr3 [15]. Test data hyperparameter 
tuning was performed using the default options in mlr3, 
using a grid search. For in-depth detail, please refer to 
mlr3tuning.mlr-org.com.

Results
During the study period, a total of 28,856 MV operations 
were performed at 910 centers on patients. Of them, 
9,863 (35.4%) experienced new-onset POAF. Risk fac-
tors for POAF included older age, diabetes, dyslipidemia, 
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hypertension, cerebrovascular disease, prior myocar-
dial infarction, sleep apnea, and chronic lung disease. 
Patients with POAF were more often on preoperative 
beta-blocker medication and had a higher STS PROM 
score (Table 1). Patients who developed POAF had longer 
postoperative hospital length of stay (Table  3). They 
experienced more complications postoperatively: higher 

stroke rates, more bleeding, more prolonged ventilation, 
and more renal failure (Table  2). Thirty-day mortality, 
hospital readmission, and arrhythmia-related hospital 
readmission rates were higher among patients who expe-
rienced POAF (Table 3).

Table 4 presents a comparison of de novo POAF pre-
diction via ML and standard methods. The highest 

Fig. 1 CONSORT diagram depicting the study final analytic cohort upon applying inclusion/exclusion criteria
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concordance index (AUROC) was achieved by penal-
ized and non-penalized logistic regression models. 
Accuracy was relatively similar across methodologies, 
and numerically largest for logistic regression (0.667). 
XGBoost had the highest recall (sensitivity) at 0.311, 
and the highest F1 score. Random forest had the high-
est specificity (0.926) and precision (0.585). Feature 

importance (Supplemental Table  3 includes top 10%) 
reveals that all methods employed identify older age 
at surgery as top risk factor for postoperative nPOAF. 
Other risk factors identified were valvular disease 
(MV stenosis, AV/TV insufficiency, PV disease), as 
well as intraoperative characteristics (initial operative 
approach, coronary artery bypass grafting, perfusion 
time).

Table 1 Preoperative characteristics by new‑onset postoperative atrial fibrillation status

Values are n (%), mean ± standard deviation

LV = Left ventricular; MV = Mitral valve; HOCM = Hypertrophic obstructive cardiomyopathy; STS PROM = The Society of Thoracic Surgeons predicted risk of mortality; 
BB = Beta-blocker

Variable Total N (Per Group) Entire cohort 
(N = 27,856)

Postoperative atrial 
fibrillation (N = 9863)

No postoperative atrial 
fibrillation (N = 17,993)

P-value

Age (years) 27,856(9863,17,993) 62.3  ± 12.4 66.6  ± 10.5 59.9  ± 12.8  < .001

Body Surface Area  (m2) 27,825(9854,17,971) 1.9  ± 0.24 1.9  ± 0.24 1.9  ± 0.24  < .001

LV Ejection Fraction (%) 27,383(9713,17,670) 58.2  ± 9.79 57.8  ± 10.09 58.4  ± 9.62  < .001

Female Gender 27,856(9863,17,993) 12,365 (44.4%) 4360 (44.2%) 8005 (44.5%) 0.65

Self‑Declared Race 27,856(9863,17,993)  < .001

 Caucasian 22,719 (81.6%) 8316 (84.3%) 14,403 (80.0%)

 Black 2561 (9.2%) 706 (7.2%) 1855 (10.3%)

 Asian 840 (3.0%) 306 (3.1%) 534 (3.0%)

 Native American 127 (0.5%) 50 (0.5%) 77 (0.4%)

 Native Pacific Islander 159 (0.6%) 52 (0.5%) 107 (0.6%)

 Other 1331 (4.8%) 402 (4.1%) 929 (5.2%)

 Unknown 119 (0.4%) 31 (0.3%) 88 (0.5%)

MV Insufficiency Degree 27,856(9863,17,993) 0.25

 Moderate 2793 (10.0%) 1013 (10.3%) 1780 (9.9%)

 Severe 22,959 (82.4%) 8059 (81.7%) 14,900 (82.8%)

MV Stenosis 27,856(9863,17,993) 3506 (12.6%) 1393 (14.1%) 2113 (11.7%)  < .001

MV Etiology 27,856(9863,17,993)  < .001

 Myxomatous 15,168 (54.5%) 5394 (54.7%) 9774 (54.3%)

 Rheumatic 1985 (7.1%) 737 (7.5%) 1248 (6.9%)

 Mixed 1198 (4.3%) 470 (4.8%) 728 (4.0%)

 Endocarditis 948 (3.4%) 233 (2.4%) 715 (4.0%)

 HOCM 631 (2.3%) 193 (2.0%) 438 (2.4%)

 Ischemic 399 (1.4%) 158 (1.6%) 241 (1.3%)

 Not Documented 5716 (20.5%) 2090 (21.2%) 3626 (20.2%)

Diabetes 27,856(9863,17,993) 4586 (16.5%) 1834 (18.6%) 2752 (15.3%)  < .001

Dyslipidemia 27,856(9863,17,993) 16,924 (60.8%) 6616 (67.1%) 10,308 (57.3%)  < .001

Hypertension 27,856(9863,17,993) 18,496 (66.4%) 7114 (72.1%) 11,382 (63.3%)  < .001

Cerebrovascular Disease 27,856(9863,17,993) 3357 (12.1%) 1329 (13.5%) 2028 (11.3%)  < .001

Myocardial Infarction 27,856(9863,17,993) 2833 (10.2%) 1136 (11.5%) 1697 (9.4%)  < .001

Sleep apnea 27,856(9863,17,993) 3885 (13.9%) 1479 (15.0%) 2406 (13.4%)  < .001

Chronic Lung Disease 27,856(9863,17,993)  < .001

 Mild 2682 (9.6%) 1065 (10.8%) 1617 (9.0%)

 Moderate 966 (3.5%) 396 (4.0%) 570 (3.2%)

 Severe 791 (2.8%) 351 (3.6%) 440 (2.4%)

Preoperative BB Medication 27,856(9863,17,993) 16,729 (60.1%) 6263 (63.5%) 10,466 (58.2%)  < .001

STS PROM 25,713(9116,16,597) 1.8  ± 2.5 2.2  ± 2.8 1.5  ± 2.3  < .001
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Discussion
There is vast literature identifying older age, surgery for 
valvular heart disease, and prior history of major cardio-
vascular disease as independent risk factors for postop-
erative AF following adult cardiac surgery. These findings 
were confirmed independently by Auer et al. (2005) [16], 
Omae and Kanmura (2012) [17], Greenberg et al. (2017) 
[18], Rezaei et  al. (2020) [19], and Lopes and Agrawal 
(2022) [20], among others. Based on feature importance 
quantification, our study further confirms that patient 
older age, heart valve disease (MV stenosis, AV/TV insuf-
ficiency, PV disease), and intraoperative elements (initial 
operative approach, coronary artery bypass grafting, per-
fusion time) are associated with a greater risk of de novo 
postoperative POAF.

In our study, machine learning methods for predicting 
POAF performed better than standard statistical meth-
odology in terms of precision, recall, F1 score, and speci-
ficity; their performance was comparable in terms of the 
other metrics, including the AUROC. Although artificial 
intelligence-enabled electrocardiogram interpretation 
may further benefit POAF prediction accuracy, scaling 
up such capabilities remains highly challenging [21–24].

In the current study, there were gains associated with 
the use of ML methods, but also limitations. The infor-
mational content available to predict POAF appears to be 
insufficient, or at least, insufficiently nonlinear in nature, 
to capitalize on the advantages of machine learning 
methods. These findings suggest that other multi-model 
features may need to be collected routinely to predict 

Table 2 Operative characteristics by new‑onset postoperative atrial fibrillation status

Values are n (%). LV = Left ventricular; MV = Mitral valve; HOCM = Hypertrophic obstructive cardiomyopathy; TV = tricuspid valve

Variable Total N (Per group) Entire cohort 
(N = 27,856)

Postoperative 
atrial fibrillation 
(N = 9863)

No postoperative 
atrial fibrillation 
(N = 17,993)

P-value

Initial operative approach 27,856(9863,17,993)  < .001

 Full conventional sternotomy 20,326 (73.0%) 7753 (78.6%) 12,573 (69.9%)

 Partial sternotomy 517 (1.9%) 187 (1.9%) 330 (1.8%)

 Right thoracotomy 1411 (5.1%) 354 (3.6%) 1057 (5.9%)

 Limited (mini) thoracotomy, right 5474 (19.7%) 1530 (15.5%) 3944 (21.9%)

 Limited (mini) thoracotomy, left 115 (0.4%) 36 (0.4%) 79 (0.4%)

 Limited (mini) thoracotomy, bilateral 13 (0.0%) 3 (0.0%) 10 (0.1%)

Robotic technology assisted 27,856(9863,17,993) 1638 (5.9%) 367 (3.7%) 1271 (7.1%)  < .001

MV procedure type 27,856(9863,17,993)  < .001

 Repair 18,117 (65.0%) 6004 (60.9%) 12,113 (67.3%)

 Replacement 9739 (35.0%) 3859 (39.1%) 5880 (32.7%)

MV repair attempt before replacement 27,856(9863,17,993) 1555 (5.6%) 601 (6.1%) 954 (5.3%) 0.006

MV or valve device implanted 27,856(9863,17,993) 26,874 (96.5%) 9595 (97.3%) 17,279 (96.0%)  < .001

Type of MV or valve device implanted 26,823(9575,17,248)  < .001

 Mechanical valve 2218 (8.3%) 645 (6.7%) 1573 (9.1%)

 Bioprosthetic valve 7695 (28.7%) 3270 (34.2%) 4425 (25.7%)

 Annuloplasty device 16,869 (62.9%) 5643 (58.9%) 11,226 (65.1%)

 Other 41 (0.2%) 17 (0.2%) 24 (0.1%)

Procedural Times

 Perfusion Time, Minutes 27,856(9863,17,993) 123  ± 51 127  ± 53 121  ± 50  < .001

 Cross‑Clamp Time, Minutes 27,856(9863,17,993) 92  ± 40 96  ± 42 90  ± 38  < .001

Coronary bypass grafting 27,856(9863,17,993) 5237 (18.8%) 2354 (23.9%) 2883 (16.0%)  < .001

Intraoperative blood products administered 27,856(9863,17,993) 7294 (26.2%) 2999 (30.4%) 4295 (23.9%)  < .001

TV Repair Procedure 27,856(9863,17,993) 2552 (9.2%) 1000 (10.1%) 1552 (8.6%)  < .001

 With annuloplasty 2509 (98.3%) 985 (98.5%) 1524 (98.2%) 0.56

 Prosthetic ring 1867 (74.5%) 738 (74.9%) 1129 (74.3%)

 Prosthetic band 408 (16.3%) 156 (15.8%) 252 (16.6%)

 Suture 218 (8.7%) 86 (8.7%) 132 (8.7%)

 Pericardium 2 (0.1%) 2 (0.2%) 0 (0.0%)

 With leaflet resection 40 (1.6%) 11 (1.1%) 29 (1.9%)
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POAF better. They may include proteomic and multi-
omic molecular data [25–28], and real-time electrocar-
diograms and photoplethysmograms [29–31]. Growing 
capabilities of 24/7 wearable devices offer novel insights 
into AF pathogenesis by providing real-time physiologi-
cal data, such as body temperature, pH, physical activ-
ity phenotype, and sleep patterns. Novel sweat monitors 
inform in real time about electrolyte, metabolic, and 
stress biomarkers, which could be critical to predicting 
POAF and other life-threatening arrhythmias [31, 32]. 
Integration of wearable devices into the clinical flow in 
the near future is progressing slowly due to regulatory 
challenges and lack of data standards [33–37]. Presently, 
fitness and consumer electronics industries lead the way 

in developing wearable physiological monitors, which 
offer ECG/PPG sensors and ML-enabled algorithms for 
detection of AF in general population. Close partner-
ship among clinical, engineering, regulatory, and indus-
trial communities, is needed to accelerate this potentially 
groundbreaking technology, which will likely revolu-
tionize real-time detection, prediction, and prevention 
of life-threatening heart rhythm disorders. Leadership 
of professional clinical societies, such as the American 
Heart Association and the American College of Cardiol-
ogy is needed to foster such a partnership.

Study limitations are those inherent to retrospective 
observational registries and include incomplete data 
reported by participants and the possibility of residual 

Table 3 Select operative and thirty‑day outcomes by new‑onset postoperative atrial fibrillation status

Values are n (%), median (first, third quartile). LOS = length of stay; ICU = intensive care unit; PPM = permanent pacemaker implantation; ICD = implantable cardioverter 
defibrillator

Variable Total N
(Per Group)

Entire Cohort
(N = 27,856)

Postoperative 
Atrial Fibrillation
(N = 9863)

No Postoperative 
Atrial Fibrillation
(N = 17,993)

P-value

Postoperative LOS, days 27,532(9743,17,789) 6 (4, 8) 7 (5, 10) 5 (4, 7)  < .001

Total LOS, days 27,527(9739,17,788) 6 (5, 8) 7 (6, 10) 5 (4, 7)  < .001

ICU LOS, hours 27,435(9762,17,673) 47 (26, 76) 52 (28, 101) 44 (25, 71)  < .001

Complications

 Stroke 27,856(9863,17,993) 374 (1.3%) 205 (2.1%) 169 (0.9%)  < .001

 New dysrhythmia requiring PPM or ICD 27,856(9863,17,993) 1562 (5.6%) 769 (7.8%) 793 (4.4%)  < .001

 Reoperation for bleeding 27,856(9863,17,993) 683 (2.5%) 314 (3.2%) 369 (2.1%)  < .001

 Reoperation for valve dysfunction 27,856(9863,17,993) 55 (0.2%) 33 (0.3%) 22 (0.1%)  < .001

 Reoperation for other cardiac reason 27,856(9863,17,993) 106 (0.4%) 51 (0.5%) 55 (0.3%) 0.006

 Sepsis 27,856(9863,17,993) 169 (0.6%) 119 (1.2%) 50 (0.3%)  < .001

 Prolonged ventilation 27,856(9863,17,993) 1530 (5.5%) 848 (8.6%) 682 (3.8%)  < .001

 Renal failure 27,856(9863,17,993) 425 (1.5%) 271 (2.7%) 154 (0.9%)  < .001

 Renal failure requiring dialysis 27,856(9863,17,993) 286 (1.0%) 184 (1.9%) 102 (0.6%)  < .001

Unadjusted operative mortality 27,856(9863,17,993) 71 (0.3%) 35 (0.4%) 36 (0.2%) 0.014

30‑day mortality 27,856(9863,17,993) 391 (1.4%) 157 (1.6%) 234 (1.3%) 0.003

30‑day hospital readmission, No (%) 27,856(9863,17,993) 2590 (9.3%) 1060 (10.7%) 1530 (8.5%)  < .001

Arrhythmia‑related 30‑day hospital readmission 27,856(9863,17,993) 670 (2.4%) 286 (2.9%) 384 (2.1%)  < .001

Table 4 Summary measures of de novo postoperative atrial fibrillation prediction methods

AUROC = area under the receiver operatic characteristic curve (concordance index), F1 score = F1 score (harmonic mean of precision and recall), PPV = positive 
predicted value, NPV = negative predicted value, XGBoost = extreme gradient boosting,

Method AUROC F1 score Precision (PPV) Recall 
(Sensitivity)

Accuracy Specificity NPV

Standard

Logistic regression 0.672 0.371 0.560 0.277 0.667 0.881 0.689

Machine Learning

Penalized logistic regression 0.672 0.296 0.575 0.200 0.664 0.919 0.677

Random forest 0.663 0.289 0.585 0.191 0.665 0.926 0.676

XGBoost 0.645 0.380 0.490 0.311 0.641 0.822 0.685
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confounding. Hospital-to-hospital variation is a source 
of variability that undoubtedly plays an important role in 
limiting the ability to predict POAF.

Conclusions
Predicting the occurrence of POAF using machine learn-
ing methods remains challenging for multiple reasons. 
This study of STS ACS national registry data suggests 
that a further expansion of multi-modal real-time data 
sources may improve POAF prediction. In practice, this 
will be challenging due to resource allocation, regulatory 
aspects, and operational considerations.
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