Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21:255–72.
Article
CAS
PubMed
Google Scholar
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359:4672.
Article
Google Scholar
Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;6:601–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang C, Li HT, Zhou YM, Wang X, Wang L, Liu ZQ. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace. 2018;20:1741–9.
PubMed
Google Scholar
Sasse P, Funken M, Beiert T, Bruegmann T. Optogenetic termination of cardiac arrhythmia: mechanistic enlightenment and therapeutic application? Front Physiol. 2019;10:675.
Article
PubMed
PubMed Central
Google Scholar
Entcheva E. Cardiac optogenetics. Am J Physiol Heart Circul Physiol. 2013;304:H1179–91.
Article
CAS
Google Scholar
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci. 2003;100:13940–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature. 2010;463:98–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muir J, Bagot R. Optogenetics: Illuminating the neural circuits of depression. In: Neurobiology of depression. Amsterdam: Elsevier; 2019. p. 147–57.
Chapter
Google Scholar
Zaglia T, Pianca N, Borile G, Da Broi F, Richter C, Campione M, Lehnart SE, Luther S, Corrado D, Miquerol L, Mongillo M. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2. Proc Natl Acad Sci U S A. 2015;112:E4495–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee P, Calvo CJ, Alfonso-Almazán JM, Quintanilla JG, Chorro FJ, Yan P, Loew LM, Filgueiras-Rama D, Millet J. Low-cost optical mapping systems for panoramic imaging of complex arrhythmias and drug-action in translational heart models. Sci Rep. 2017;7:1–14.
Google Scholar
Sill B, Hammer PE and Cowan DB. Optical mapping of Langendorff-perfused rat hearts. J Vis Exp. 2009.
Watanabe M and Okada T. Langendorff perfusion method as an ex vivo model to evaluate heart function in rats. In: Experimental models of cardiovascular diseases. Springer; 2018. p. 107–116.
Dong R, Mu-U-Min R, Reith AJ, O’Shea C, He S, Duan K, Kou K, Grassam-Rowe A, Tan X, Pavlovic D. A protocol for dual calcium-voltage optical mapping in murine sinoatrial preparation with optogenetic pacing. Front Physiol. 2019;10:954.
Article
PubMed
PubMed Central
Google Scholar
Matiukas A, Mitrea BG, Qin M, Pertsov AM, Shvedko AG, Warren MD, Zaitsev AV, Wuskell JP, Watras J, Loew LM. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm. 2007;4:1441–51.
Article
PubMed
PubMed Central
Google Scholar
Yan P, Acker CD, Zhou W-L, Lee P, Bollensdorff C, Negrean A, Lotti J, Sacconi L, Antic SD, Kohl P. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci. 2012;109:20443–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee P, Quintanilla JG, Alfonso-Almazan JM, Galán-Arriola C, Yan P, Sánchez-González J, Perez-Castellano N, Pérez-Villacastín J, Ibañez B, Loew LM. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovasc Res. 2019;115:1659–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park SA, Lee S-R, Tung L, Yue DT. Optical mapping of optogenetically shaped cardiac action potentials. Sci Rep. 2014;4:1–10.
CAS
Google Scholar
Kobayashi M, Massiello A, Karimov JH, Van Wagoner DR, Fukamachi K. Cardiac autonomic nerve stimulation in the treatment of heart failure. Ann Thorac Surg. 2013;96:339–45.
Article
PubMed
PubMed Central
Google Scholar
Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171–98.
Article
PubMed
Google Scholar
Theodore WH. Transcranial magnetic stimulation in epilepsy. Epilepsy Currents. 2003;3:191–7.
Article
PubMed
PubMed Central
Google Scholar
Meyer JF, Wolf B, Gross GW. Magnetic stimulation and depression of mammalian networks in primary neuronal cell cultures. IEEE Trans Biomed Eng. 2009;56:1512–23.
Article
PubMed
Google Scholar
Weiler M, Stieger KC, Long JM and Rapp PR. Transcranial Magnetic Stimulation in Alzheimer’s disease: are we ready? Eneuro. 2020;7.
Yang C, Guo Z, Peng H, Xing G, Chen H, McClure MA, He B, He L, Du F, Xiong L. Repetitive transcranial magnetic stimulation therapy for motor recovery in Parkinson’s disease: a meta-analysis. Brain Behavior. 2018;8:e01132.
Article
PubMed
PubMed Central
Google Scholar
Wang T-W, Sung Y-L, Lin S-F. Cardiac influence of repetitive transcranial magnetic stimulation in small animals. IEEE J Electromagn RF Microw Med Biol. 2019;4:279–85.
Article
Google Scholar
Williams JC, Entcheva E. Optogenetic versus electrical stimulation of human cardiomyocytes: modeling insights. Biophys J. 2015;108:1934–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446:633–9.
Article
CAS
PubMed
Google Scholar
Han X, Qian X, Stern P, Chuong AS, Boyden ES. Informational lesions: optical perturbation of spike timing and neural synchrony via microbial opsin gene fusions. Front Mol Neurosci. 2009;2:12.
Article
PubMed
PubMed Central
Google Scholar
Colón-Thillet R, Jerome KR, Stone D. Optimization of AAV vectors to target persistent viral reservoirs. Virol J. 2021;18:1–18.
Article
Google Scholar
Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success—a personal perspective. Hum Gene Ther. 2015;26:257–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verdera HC, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol Ther. 2020;28:723–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colon-Thillet R, Jerome KR, Stone D. Optimization of AAV vectors to target persistent viral reservoirs. Virol J. 2021;18:85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci. 2002;99:11854–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM. Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78:6381–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ, Calcedo R, Sanmiguel J, Abbas Z, Wilson JM. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci. 2003;100:6081–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H, Ozawa K, Isa T, Yamamori T. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res. 2015;93:144–57.
Article
PubMed
Google Scholar
Haery L, Deverman BE, Matho KS, Cetin A, Woodard K, Cepko C, Guerin KI, Rego MA, Ersing I, Bachle SM. Adeno-associated virus technologies and methods for targeted neuronal manipulation. Front Neuroanat. 2019;13:93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE. Comparative cardiac gene delivery of adeno-associated virus serotypes 1–9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci. 2010;3:81–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ambrosi CM, Sadananda G, Han JL, Entcheva E. Adeno-associated virus mediated gene delivery: implications for scalable in vitro and in vivo cardiac optogenetic models. Front Physiol. 2019;10:168.
Article
PubMed
PubMed Central
Google Scholar
Inagaki K, Fuess S, Storm TA, Gibson GA, Mctiernan CF, Kay MA, Nakai H. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther. 2006;14:45–53.
Article
CAS
PubMed
Google Scholar
Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE, Zolotukhin I, Tarantal AF, Byrne BJ. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res. 2006;99:e3–9.
Article
CAS
PubMed
Google Scholar
Prasad KM, Smith RS, Xu Y, French BA. A single direct injection into the left ventricular wall of an adeno-associated virus 9 (AAV9) vector expressing extracellular superoxide dismutase from the cardiac troponin-T promoter protects mice against myocardial infarction. J Gene Med. 2011;13:333–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res. 2015;108:4–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogt CC, Bruegmann T, Malan D, Ottersbach A, Roell W, Fleischmann BK, Sasse P. Systemic gene transfer enables optogenetic pacing of mouse hearts. Cardiovasc Res. 2015;106:338–43.
Article
CAS
PubMed
Google Scholar
Klimas A, Entcheva E. Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective. J Biomed Opt. 2014;19:080701.
Article
PubMed
PubMed Central
Google Scholar
Gao G, Bish LT, Sleeper MM, Mu X, Sun L, Lou Y, Duan J, Hu C, Wang L, Sweeney HL. Transendocardial delivery of AAV6 results in highly efficient and global cardiac gene transfer in rhesus macaques. Hum Gene Ther. 2011;22:979–84.
Article
CAS
PubMed
Google Scholar
Chuah MK, Petrus I, De Bleser P, Le Guiner C, Gernoux G, Adjali O, Nair N, Willems J, Evens H, Rincon MY, Matrai J, Di Matteo M, Samara-Kuko E, Yan B, Acosta-Sanchez A, Meliani A, Cherel G, Blouin V, Christophe O, Moullier P, Mingozzi F, VandenDriessche T. Liver-specific transcriptional modules identified by genome-wide in silico analysis enable efficient gene therapy in mice and non-human primates. Mol Ther. 2014;22:1605–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yue Y, Ghosh A, Long C, Bostick B, Smith BF, Kornegay JN, Duan D. A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther. 2008;16:1944–52.
Article
CAS
PubMed
Google Scholar
Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N, Leike K, Odenthal M, Drebber U, Hallek M, Baker AH. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther. 2006;13:683–93.
Article
CAS
PubMed
Google Scholar
Wang J, Faust SM, Rabinowitz JE. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes. J Mol Cell Cardiol. 2011;50:793–802.
Article
CAS
PubMed
Google Scholar
Ying Y, Muller OJ, Goehringer C, Leuchs B, Trepel M, Katus HA, Kleinschmidt JA. Heart-targeted adeno-associated viral vectors selected by in vivo biopanning of a random viral display peptide library. Gene Ther. 2010;17:980–90.
Article
CAS
PubMed
Google Scholar
Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C, Pu D, Hu X, Wang DZ, Li J, Xiao X. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A. 2009;106:3946–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, Wyskiel DR, Yang W, Wang Y, Milbern LC, Lalanne T, Jiang X, Shen Y, Sun QQ, Zhu JJ. An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits. Nat Protoc. 2015;10:397–412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gruber A, Edri O, Huber I, Arbel G, Gepstein A, Shiti A, Shaheen N, Chorna S, Landesberg M, Gepstein L. Optogenetic modulation of cardiac action potential properties may prevent arrhythmogenesis in short and long QT syndromes. JCI Insight. 2021;6:147470.
Article
PubMed
Google Scholar
Nussinovitch U, Gepstein L. Optogenetics for suppression of cardiac electrical activity in human and rat cardiomyocyte cultures. Neurophotonics. 2015;2:031204.
Article
PubMed
PubMed Central
Google Scholar
Bub G, Daniels MJ. Feasibility of using adjunctive optogenetic technologies in cardiomyocyte phenotyping - from the single cell to the whole heart. Curr Pharm Biotechnol. 2020;21:752–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Shea C, Holmes AP, Winter J, Correia J, Ou X, Dong R, He S, Kirchhof P, Fabritz L, Rajpoot K, Pavlovic D. Cardiac optogenetics and optical mapping - overcoming spectral congestion in all-optical cardiac electrophysiology. Front Physiol. 2019;10:182.
Article
PubMed
PubMed Central
Google Scholar
Klimas A, Ambrosi CM, Yu J, Williams JC, Bien H, Entcheva E. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology. Nat Commun. 2016;7:11542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang TW, Sung YL, Chu HW, Lin SF. IPG-based field potential measurement of cultured cardiomyocytes for optogenetic applications. Biosens Bioelectron. 2021;179:113060.
Article
CAS
PubMed
Google Scholar
Wang T-W, Chu H-W, Chen W-X, Shih Y-T, Hsu P-C, Cheng H-M, Lin S-F. Single-channel impedance plethysmography neck patch device for unobtrusive wearable cardiovascular monitoring. IEEE Access. 2020;8:184909–19.
Article
Google Scholar
Wang TW, Chu HW, Chou L, Sung YL, Shih YT, Hsu PC, Cheng HM, Lin SF. Bio-impedance measurement optimization for high-resolution carotid pulse sensing. Sensors (Basel). 2021;21:1600.
Article
PubMed
PubMed Central
Google Scholar
Wang T-W, Chen W-X, Chu H-W, Lin S-F. Single-channel bioimpedance measurement for wearable continuous blood pressure monitoring. IEEE Trans Instrum Meas. 2020;70:1–9.
Article
Google Scholar
Ummarino D. Arrhythmias: optogenetic control of cardiac rhythm. Nat Rev Cardiol. 2017;14:128.
PubMed
Google Scholar
Richter C, Christoph J, Lehnart SE, Luther S. Optogenetic light crafting tools for the control of cardiac arrhythmias. Methods Mol Biol. 2016;1408:293–302.
Article
CAS
PubMed
Google Scholar
Nussinovitch U, Gepstein L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat Biotechnol. 2015;33:750–4.
Article
CAS
PubMed
Google Scholar
Corrigendum to. ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;2018(39):1109.
Google Scholar
Siebermair J, Kholmovski EG, Marrouche N. Assessment of left atrial fibrosis by late gadolinium enhancement magnetic resonance imaging: methodology and clinical implications. JACC Clin Electrophysiol. 2017;3:791–802.
Article
PubMed
Google Scholar
Floria M, Radu S, Gosav EM, Moraru AC, Serban T, Carauleanu A, Costea CF, Ouatu A, Ciocoiu M, Tanase DM. Cardiac optogenetics in atrial fibrillation: current challenges and future opportunities. Biomed Res Int. 2020;2020:8814092.
Article
PubMed
PubMed Central
Google Scholar
Bruegmann T, Boyle PM, Vogt CC, Karathanos TV, Arevalo HJ, Fleischmann BK, Trayanova NA, Sasse P. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. J Clin Invest. 2016;126:3894–904.
Article
PubMed
PubMed Central
Google Scholar
Marcus GM, Chan DW, Redberg RF. Recollection of pain due to inappropriate versus appropriate implantable cardioverter-defibrillator shocks. Pacing Clin Electrophysiol. 2011;34:348–53.
Article
PubMed
Google Scholar
Sohail MR, Henrikson CA, Braid-Forbes MJ, Forbes KF, Lerner DJ. Mortality and cost associated with cardiovascular implantable electronic device infections. Arch Intern Med. 2011;171:1821–8.
Article
PubMed
Google Scholar
Larsen GK, Evans J, Lambert WE, Chen Y, Raitt MH. Shocks burden and increased mortality in implantable cardioverter-defibrillator patients. Heart Rhythm. 2011;8:1881–6.
Article
PubMed
Google Scholar
Arrenberg AB, Stainier DY, Baier H, Huisken J. Optogenetic control of cardiac function. Science. 2010;330:971–4.
Article
CAS
PubMed
Google Scholar
Nussinovitch U, Shinnawi R, Gepstein L. Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins. Cardiovasc Res. 2014;102:176–87.
Article
CAS
PubMed
Google Scholar
Gepstein L, Gruber A. Optogenetic neuromodulation of the heart. J Am Coll Cardiol. 2017;70:2791–4.
Article
PubMed
Google Scholar
Yu L, Zhou L, Cao G, Po SS, Huang B, Zhou X, Wang M, Yuan S, Wang Z, Wang S. Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J Am Coll Cardiol. 2017;70:2778–90.
Article
PubMed
Google Scholar
Wengrowski AM, Wang X, Tapa S, Posnack NG, Mendelowitz D, Kay MW. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovasc Res. 2015;105:143–50.
Article
CAS
PubMed
Google Scholar
Crocini C, Ferrantini C, Coppini R, Scardigli M, Yan P, Loew LM, Smith G, Cerbai E, Poggesi C, Pavone FS. Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation. Sci Rep. 2016;6:1–7.
Article
Google Scholar
Bruegmann T, Boyle PM, Vogt CC, Karathanos TV, Arevalo HJ, Fleischmann BK, Trayanova NA, Sasse P. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. J Clin Investig. 2016;126:3894–904.
Article
PubMed
PubMed Central
Google Scholar